LECTURE NOTES: 4-2 THE MEAN VALUE THEOREM

(PART 2) "
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2. State the Mein Value Theorem and draw a picture illustrating it.

I% i L §09) 1§ $69 s contmuous on La,bl and
= ' difSererticble on Ca,b) | How Hhere 2xists
e Lo , Seme € in (4 so HRat
% .

! ‘ 7X £(b) - £ (o)

/
[/ 8 b S\: (C).: b-ou

L

3. Johnny Fever says “Rolle’s Theorem? We don’t need no stinking Rolle’s Theorem. It’s just a special
case of the Mean Value Theorem.” Is he right? Explain.
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4. Consider f(x) = 1/z on the interval [1, 3].

(a) Verify that the function f(x) satisfies the hypothesis of the Mean Value Theorem on the given
interval.
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(b) Find all numbers c that satisfy the conclusion of the Mean Value Theorem.

wovk
|£ QC@:‘,‘Z: x" Han §'6- :—x Sinee a-l ‘%@:&-‘(h:l,

Sinee o3, 8- 5)- %, 8 &@i@ s

/ 1 |
Wey\eealCSo"’g\a‘t $(N-—--1 g 0= +
'4\(l33 i 3 > "’r fe=33.
n
(c) Sketch th)e graph to show that your answer above are correctlk - ﬁ nt m Q1 ,33
N\ —9.‘\/
3 PL=%

L \'\aﬁ S’OPQ W\:'.-‘%

5. Construct an example of a specific function f(z) and interval [a, b] such that there are exactly three
numbers c in (a, b) satisfying the Mean Value Theorem.
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6. Fill in the blank below and draw a picture illustrating this theorem.
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ONE LAST BIG IDEA: |

1. Give the formulas for two different functions f(z) and g(z) such that f'(z) = ¢’(x) and sketch these
two functions on the same set of axes.
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3. Why is Corollary 2 true?
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| PRACTICE PROBLEMS: |

1. Suppose f is continuous on [2,5] and 1 < f'(z) < 4 forall z in (2,5). Show that 3 < f(5) — f(2) <
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3. For each function below, show that there is no value of ¢ on [0, 2] such that f'(c) =
'¥-Why does this not contradict Rolle’s Theorem?
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4. Two stationary patrol cars equipped with radar are 5 miles apart on a highway. As a truck passes
the first patrol car, its speed is clocked at 55 miles per hour. Four minutes later, when the truck
passes the second patrol car, its speed is clocked at 50 miles per hour. Prove that the truck must
have exceeded the speed limit of 55 miles per hour at some time during the four minutes.
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